Рассчитать высоту треугольника со сторонами 131, 102 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 102 + 57}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-131)(145-102)(145-57)}}{102}\normalsize = 54.3442259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-131)(145-102)(145-57)}}{131}\normalsize = 42.3138247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-131)(145-102)(145-57)}}{57}\normalsize = 97.2475621}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 102 и 57 равна 54.3442259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 102 и 57 равна 42.3138247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 102 и 57 равна 97.2475621
Ссылка на результат
?n1=131&n2=102&n3=57
Найти высоту треугольника со сторонами 138, 97 и 66
Найти высоту треугольника со сторонами 134, 127 и 97
Найти высоту треугольника со сторонами 128, 127 и 64
Найти высоту треугольника со сторонами 111, 101 и 86
Найти высоту треугольника со сторонами 127, 120 и 30
Найти высоту треугольника со сторонами 113, 94 и 70
Найти высоту треугольника со сторонами 134, 127 и 97
Найти высоту треугольника со сторонами 128, 127 и 64
Найти высоту треугольника со сторонами 111, 101 и 86
Найти высоту треугольника со сторонами 127, 120 и 30
Найти высоту треугольника со сторонами 113, 94 и 70