Рассчитать высоту треугольника со сторонами 131, 102 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 102 + 63}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-131)(148-102)(148-63)}}{102}\normalsize = 61.4997742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-131)(148-102)(148-63)}}{131}\normalsize = 47.8853203}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-131)(148-102)(148-63)}}{63}\normalsize = 99.5710629}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 102 и 63 равна 61.4997742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 102 и 63 равна 47.8853203
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 102 и 63 равна 99.5710629
Ссылка на результат
?n1=131&n2=102&n3=63
Найти высоту треугольника со сторонами 133, 96 и 61
Найти высоту треугольника со сторонами 117, 100 и 35
Найти высоту треугольника со сторонами 148, 127 и 99
Найти высоту треугольника со сторонами 106, 97 и 78
Найти высоту треугольника со сторонами 125, 82 и 54
Найти высоту треугольника со сторонами 147, 116 и 101
Найти высоту треугольника со сторонами 117, 100 и 35
Найти высоту треугольника со сторонами 148, 127 и 99
Найти высоту треугольника со сторонами 106, 97 и 78
Найти высоту треугольника со сторонами 125, 82 и 54
Найти высоту треугольника со сторонами 147, 116 и 101