Рассчитать высоту треугольника со сторонами 131, 105 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 105 + 42}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-131)(139-105)(139-42)}}{105}\normalsize = 36.4769414}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-131)(139-105)(139-42)}}{131}\normalsize = 29.2372431}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-131)(139-105)(139-42)}}{42}\normalsize = 91.1923536}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 105 и 42 равна 36.4769414
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 105 и 42 равна 29.2372431
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 105 и 42 равна 91.1923536
Ссылка на результат
?n1=131&n2=105&n3=42
Найти высоту треугольника со сторонами 130, 130 и 118
Найти высоту треугольника со сторонами 49, 48 и 27
Найти высоту треугольника со сторонами 119, 109 и 26
Найти высоту треугольника со сторонами 90, 89 и 28
Найти высоту треугольника со сторонами 67, 61 и 13
Найти высоту треугольника со сторонами 80, 69 и 29
Найти высоту треугольника со сторонами 49, 48 и 27
Найти высоту треугольника со сторонами 119, 109 и 26
Найти высоту треугольника со сторонами 90, 89 и 28
Найти высоту треугольника со сторонами 67, 61 и 13
Найти высоту треугольника со сторонами 80, 69 и 29