Рассчитать высоту треугольника со сторонами 131, 108 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 108 + 26}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-131)(132.5-108)(132.5-26)}}{108}\normalsize = 13.3357564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-131)(132.5-108)(132.5-26)}}{131}\normalsize = 10.9943641}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-131)(132.5-108)(132.5-26)}}{26}\normalsize = 55.3946806}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 108 и 26 равна 13.3357564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 108 и 26 равна 10.9943641
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 108 и 26 равна 55.3946806
Ссылка на результат
?n1=131&n2=108&n3=26
Найти высоту треугольника со сторонами 122, 118 и 52
Найти высоту треугольника со сторонами 124, 124 и 108
Найти высоту треугольника со сторонами 146, 129 и 61
Найти высоту треугольника со сторонами 51, 46 и 43
Найти высоту треугольника со сторонами 105, 101 и 54
Найти высоту треугольника со сторонами 121, 103 и 29
Найти высоту треугольника со сторонами 124, 124 и 108
Найти высоту треугольника со сторонами 146, 129 и 61
Найти высоту треугольника со сторонами 51, 46 и 43
Найти высоту треугольника со сторонами 105, 101 и 54
Найти высоту треугольника со сторонами 121, 103 и 29