Рассчитать высоту треугольника со сторонами 131, 111 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 111 + 64}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-131)(153-111)(153-64)}}{111}\normalsize = 63.9121932}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-131)(153-111)(153-64)}}{131}\normalsize = 54.1546065}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-131)(153-111)(153-64)}}{64}\normalsize = 110.84771}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 111 и 64 равна 63.9121932
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 111 и 64 равна 54.1546065
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 111 и 64 равна 110.84771
Ссылка на результат
?n1=131&n2=111&n3=64
Найти высоту треугольника со сторонами 49, 44 и 7
Найти высоту треугольника со сторонами 139, 97 и 56
Найти высоту треугольника со сторонами 91, 75 и 54
Найти высоту треугольника со сторонами 102, 94 и 70
Найти высоту треугольника со сторонами 38, 24 и 22
Найти высоту треугольника со сторонами 128, 121 и 86
Найти высоту треугольника со сторонами 139, 97 и 56
Найти высоту треугольника со сторонами 91, 75 и 54
Найти высоту треугольника со сторонами 102, 94 и 70
Найти высоту треугольника со сторонами 38, 24 и 22
Найти высоту треугольника со сторонами 128, 121 и 86