Рассчитать высоту треугольника со сторонами 131, 111 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 111 + 74}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-131)(158-111)(158-74)}}{111}\normalsize = 73.9445235}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-131)(158-111)(158-74)}}{131}\normalsize = 62.6552832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-131)(158-111)(158-74)}}{74}\normalsize = 110.916785}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 111 и 74 равна 73.9445235
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 111 и 74 равна 62.6552832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 111 и 74 равна 110.916785
Ссылка на результат
?n1=131&n2=111&n3=74
Найти высоту треугольника со сторонами 27, 27 и 21
Найти высоту треугольника со сторонами 70, 63 и 36
Найти высоту треугольника со сторонами 122, 119 и 70
Найти высоту треугольника со сторонами 112, 94 и 62
Найти высоту треугольника со сторонами 59, 47 и 45
Найти высоту треугольника со сторонами 109, 107 и 70
Найти высоту треугольника со сторонами 70, 63 и 36
Найти высоту треугольника со сторонами 122, 119 и 70
Найти высоту треугольника со сторонами 112, 94 и 62
Найти высоту треугольника со сторонами 59, 47 и 45
Найти высоту треугольника со сторонами 109, 107 и 70