Рассчитать высоту треугольника со сторонами 131, 113 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 113 + 102}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-131)(173-113)(173-102)}}{113}\normalsize = 98.4700251}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-131)(173-113)(173-102)}}{131}\normalsize = 84.9397926}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-131)(173-113)(173-102)}}{102}\normalsize = 109.089342}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 113 и 102 равна 98.4700251
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 113 и 102 равна 84.9397926
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 113 и 102 равна 109.089342
Ссылка на результат
?n1=131&n2=113&n3=102
Найти высоту треугольника со сторонами 93, 55 и 44
Найти высоту треугольника со сторонами 95, 94 и 62
Найти высоту треугольника со сторонами 141, 112 и 41
Найти высоту треугольника со сторонами 139, 116 и 31
Найти высоту треугольника со сторонами 71, 70 и 27
Найти высоту треугольника со сторонами 148, 105 и 52
Найти высоту треугольника со сторонами 95, 94 и 62
Найти высоту треугольника со сторонами 141, 112 и 41
Найти высоту треугольника со сторонами 139, 116 и 31
Найти высоту треугольника со сторонами 71, 70 и 27
Найти высоту треугольника со сторонами 148, 105 и 52