Рассчитать высоту треугольника со сторонами 131, 113 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 113 + 106}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-131)(175-113)(175-106)}}{113}\normalsize = 101.582128}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-131)(175-113)(175-106)}}{131}\normalsize = 87.624278}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-131)(175-113)(175-106)}}{106}\normalsize = 108.290381}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 113 и 106 равна 101.582128
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 113 и 106 равна 87.624278
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 113 и 106 равна 108.290381
Ссылка на результат
?n1=131&n2=113&n3=106
Найти высоту треугольника со сторонами 150, 148 и 61
Найти высоту треугольника со сторонами 146, 83 и 71
Найти высоту треугольника со сторонами 134, 128 и 93
Найти высоту треугольника со сторонами 71, 59 и 57
Найти высоту треугольника со сторонами 127, 118 и 83
Найти высоту треугольника со сторонами 136, 99 и 81
Найти высоту треугольника со сторонами 146, 83 и 71
Найти высоту треугольника со сторонами 134, 128 и 93
Найти высоту треугольника со сторонами 71, 59 и 57
Найти высоту треугольника со сторонами 127, 118 и 83
Найти высоту треугольника со сторонами 136, 99 и 81