Рассчитать высоту треугольника со сторонами 131, 119 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 119 + 105}{2}} \normalsize = 177.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{177.5(177.5-131)(177.5-119)(177.5-105)}}{119}\normalsize = 99.438743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{177.5(177.5-131)(177.5-119)(177.5-105)}}{131}\normalsize = 90.3298505}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{177.5(177.5-131)(177.5-119)(177.5-105)}}{105}\normalsize = 112.697242}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 119 и 105 равна 99.438743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 119 и 105 равна 90.3298505
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 119 и 105 равна 112.697242
Ссылка на результат
?n1=131&n2=119&n3=105
Найти высоту треугольника со сторонами 149, 127 и 58
Найти высоту треугольника со сторонами 148, 111 и 39
Найти высоту треугольника со сторонами 80, 52 и 46
Найти высоту треугольника со сторонами 142, 97 и 72
Найти высоту треугольника со сторонами 129, 128 и 55
Найти высоту треугольника со сторонами 55, 50 и 42
Найти высоту треугольника со сторонами 148, 111 и 39
Найти высоту треугольника со сторонами 80, 52 и 46
Найти высоту треугольника со сторонами 142, 97 и 72
Найти высоту треугольника со сторонами 129, 128 и 55
Найти высоту треугольника со сторонами 55, 50 и 42