Рассчитать высоту треугольника со сторонами 131, 125 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 125 + 83}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-131)(169.5-125)(169.5-83)}}{125}\normalsize = 80.1905621}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-131)(169.5-125)(169.5-83)}}{131}\normalsize = 76.517712}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-131)(169.5-125)(169.5-83)}}{83}\normalsize = 120.768919}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 125 и 83 равна 80.1905621
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 125 и 83 равна 76.517712
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 125 и 83 равна 120.768919
Ссылка на результат
?n1=131&n2=125&n3=83
Найти высоту треугольника со сторонами 118, 75 и 57
Найти высоту треугольника со сторонами 95, 84 и 39
Найти высоту треугольника со сторонами 81, 77 и 14
Найти высоту треугольника со сторонами 133, 77 и 64
Найти высоту треугольника со сторонами 126, 115 и 90
Найти высоту треугольника со сторонами 91, 63 и 59
Найти высоту треугольника со сторонами 95, 84 и 39
Найти высоту треугольника со сторонами 81, 77 и 14
Найти высоту треугольника со сторонами 133, 77 и 64
Найти высоту треугольника со сторонами 126, 115 и 90
Найти высоту треугольника со сторонами 91, 63 и 59