Рассчитать высоту треугольника со сторонами 131, 127 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 127 + 34}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-131)(146-127)(146-34)}}{127}\normalsize = 33.996495}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-131)(146-127)(146-34)}}{131}\normalsize = 32.9584341}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-131)(146-127)(146-34)}}{34}\normalsize = 126.986908}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 127 и 34 равна 33.996495
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 127 и 34 равна 32.9584341
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 127 и 34 равна 126.986908
Ссылка на результат
?n1=131&n2=127&n3=34
Найти высоту треугольника со сторонами 130, 113 и 83
Найти высоту треугольника со сторонами 138, 117 и 50
Найти высоту треугольника со сторонами 85, 82 и 65
Найти высоту треугольника со сторонами 146, 144 и 120
Найти высоту треугольника со сторонами 124, 122 и 12
Найти высоту треугольника со сторонами 135, 88 и 88
Найти высоту треугольника со сторонами 138, 117 и 50
Найти высоту треугольника со сторонами 85, 82 и 65
Найти высоту треугольника со сторонами 146, 144 и 120
Найти высоту треугольника со сторонами 124, 122 и 12
Найти высоту треугольника со сторонами 135, 88 и 88