Рассчитать высоту треугольника со сторонами 131, 73 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 73 + 60}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-131)(132-73)(132-60)}}{73}\normalsize = 20.5157007}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-131)(132-73)(132-60)}}{131}\normalsize = 11.4324134}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-131)(132-73)(132-60)}}{60}\normalsize = 24.9607692}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 73 и 60 равна 20.5157007
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 73 и 60 равна 11.4324134
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 73 и 60 равна 24.9607692
Ссылка на результат
?n1=131&n2=73&n3=60
Найти высоту треугольника со сторонами 147, 97 и 63
Найти высоту треугольника со сторонами 127, 103 и 77
Найти высоту треугольника со сторонами 103, 71 и 70
Найти высоту треугольника со сторонами 99, 95 и 64
Найти высоту треугольника со сторонами 57, 48 и 40
Найти высоту треугольника со сторонами 133, 105 и 51
Найти высоту треугольника со сторонами 127, 103 и 77
Найти высоту треугольника со сторонами 103, 71 и 70
Найти высоту треугольника со сторонами 99, 95 и 64
Найти высоту треугольника со сторонами 57, 48 и 40
Найти высоту треугольника со сторонами 133, 105 и 51