Рассчитать высоту треугольника со сторонами 131, 97 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 97 + 54}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-131)(141-97)(141-54)}}{97}\normalsize = 47.902015}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-131)(141-97)(141-54)}}{131}\normalsize = 35.4694309}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-131)(141-97)(141-54)}}{54}\normalsize = 86.0462121}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 97 и 54 равна 47.902015
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 97 и 54 равна 35.4694309
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 97 и 54 равна 86.0462121
Ссылка на результат
?n1=131&n2=97&n3=54
Найти высоту треугольника со сторонами 72, 55 и 25
Найти высоту треугольника со сторонами 141, 138 и 22
Найти высоту треугольника со сторонами 71, 65 и 35
Найти высоту треугольника со сторонами 141, 113 и 34
Найти высоту треугольника со сторонами 90, 77 и 74
Найти высоту треугольника со сторонами 72, 61 и 28
Найти высоту треугольника со сторонами 141, 138 и 22
Найти высоту треугольника со сторонами 71, 65 и 35
Найти высоту треугольника со сторонами 141, 113 и 34
Найти высоту треугольника со сторонами 90, 77 и 74
Найти высоту треугольника со сторонами 72, 61 и 28