Рассчитать высоту треугольника со сторонами 132, 100 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 100 + 59}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-132)(145.5-100)(145.5-59)}}{100}\normalsize = 55.6086214}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-132)(145.5-100)(145.5-59)}}{132}\normalsize = 42.1277435}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-132)(145.5-100)(145.5-59)}}{59}\normalsize = 94.2519007}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 100 и 59 равна 55.6086214
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 100 и 59 равна 42.1277435
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 100 и 59 равна 94.2519007
Ссылка на результат
?n1=132&n2=100&n3=59