Рассчитать высоту треугольника со сторонами 132, 101 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 101 + 72}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-132)(152.5-101)(152.5-72)}}{101}\normalsize = 71.2889189}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-132)(152.5-101)(152.5-72)}}{132}\normalsize = 54.5468243}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-132)(152.5-101)(152.5-72)}}{72}\normalsize = 100.002511}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 101 и 72 равна 71.2889189
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 101 и 72 равна 54.5468243
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 101 и 72 равна 100.002511
Ссылка на результат
?n1=132&n2=101&n3=72
Найти высоту треугольника со сторонами 90, 74 и 18
Найти высоту треугольника со сторонами 99, 80 и 49
Найти высоту треугольника со сторонами 108, 87 и 30
Найти высоту треугольника со сторонами 79, 56 и 54
Найти высоту треугольника со сторонами 101, 66 и 62
Найти высоту треугольника со сторонами 149, 110 и 69
Найти высоту треугольника со сторонами 99, 80 и 49
Найти высоту треугольника со сторонами 108, 87 и 30
Найти высоту треугольника со сторонами 79, 56 и 54
Найти высоту треугольника со сторонами 101, 66 и 62
Найти высоту треугольника со сторонами 149, 110 и 69