Рассчитать высоту треугольника со сторонами 132, 110 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 110 + 52}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-132)(147-110)(147-52)}}{110}\normalsize = 50.6179173}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-132)(147-110)(147-52)}}{132}\normalsize = 42.1815978}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-132)(147-110)(147-52)}}{52}\normalsize = 107.076364}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 110 и 52 равна 50.6179173
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 110 и 52 равна 42.1815978
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 110 и 52 равна 107.076364
Ссылка на результат
?n1=132&n2=110&n3=52
Найти высоту треугольника со сторонами 104, 100 и 57
Найти высоту треугольника со сторонами 144, 139 и 123
Найти высоту треугольника со сторонами 127, 125 и 99
Найти высоту треугольника со сторонами 121, 115 и 76
Найти высоту треугольника со сторонами 122, 120 и 71
Найти высоту треугольника со сторонами 77, 59 и 34
Найти высоту треугольника со сторонами 144, 139 и 123
Найти высоту треугольника со сторонами 127, 125 и 99
Найти высоту треугольника со сторонами 121, 115 и 76
Найти высоту треугольника со сторонами 122, 120 и 71
Найти высоту треугольника со сторонами 77, 59 и 34