Рассчитать высоту треугольника со сторонами 132, 113 и 50

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 113 + 50}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-132)(147.5-113)(147.5-50)}}{113}\normalsize = 49.0823408}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-132)(147.5-113)(147.5-50)}}{132}\normalsize = 42.0174584}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-132)(147.5-113)(147.5-50)}}{50}\normalsize = 110.92609}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 113 и 50 равна 49.0823408
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 113 и 50 равна 42.0174584
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 113 и 50 равна 110.92609
Ссылка на результат
?n1=132&n2=113&n3=50