Рассчитать высоту треугольника со сторонами 132, 115 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 115 + 19}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-132)(133-115)(133-19)}}{115}\normalsize = 9.08545442}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-132)(133-115)(133-19)}}{132}\normalsize = 7.91535802}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-132)(133-115)(133-19)}}{19}\normalsize = 54.9909083}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 115 и 19 равна 9.08545442
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 115 и 19 равна 7.91535802
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 115 и 19 равна 54.9909083
Ссылка на результат
?n1=132&n2=115&n3=19
Найти высоту треугольника со сторонами 85, 84 и 68
Найти высоту треугольника со сторонами 91, 75 и 66
Найти высоту треугольника со сторонами 91, 72 и 29
Найти высоту треугольника со сторонами 121, 101 и 52
Найти высоту треугольника со сторонами 141, 94 и 88
Найти высоту треугольника со сторонами 145, 129 и 78
Найти высоту треугольника со сторонами 91, 75 и 66
Найти высоту треугольника со сторонами 91, 72 и 29
Найти высоту треугольника со сторонами 121, 101 и 52
Найти высоту треугольника со сторонами 141, 94 и 88
Найти высоту треугольника со сторонами 145, 129 и 78