Рассчитать высоту треугольника со сторонами 132, 115 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 115 + 49}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-132)(148-115)(148-49)}}{115}\normalsize = 48.3723929}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-132)(148-115)(148-49)}}{132}\normalsize = 42.142615}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-132)(148-115)(148-49)}}{49}\normalsize = 113.527045}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 115 и 49 равна 48.3723929
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 115 и 49 равна 42.142615
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 115 и 49 равна 113.527045
Ссылка на результат
?n1=132&n2=115&n3=49
Найти высоту треугольника со сторонами 150, 91 и 67
Найти высоту треугольника со сторонами 129, 122 и 60
Найти высоту треугольника со сторонами 141, 112 и 46
Найти высоту треугольника со сторонами 126, 95 и 32
Найти высоту треугольника со сторонами 148, 136 и 69
Найти высоту треугольника со сторонами 123, 123 и 39
Найти высоту треугольника со сторонами 129, 122 и 60
Найти высоту треугольника со сторонами 141, 112 и 46
Найти высоту треугольника со сторонами 126, 95 и 32
Найти высоту треугольника со сторонами 148, 136 и 69
Найти высоту треугольника со сторонами 123, 123 и 39