Рассчитать высоту треугольника со сторонами 132, 120 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 120 + 32}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-132)(142-120)(142-32)}}{120}\normalsize = 30.8958825}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-132)(142-120)(142-32)}}{132}\normalsize = 28.0871659}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-132)(142-120)(142-32)}}{32}\normalsize = 115.859559}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 120 и 32 равна 30.8958825
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 120 и 32 равна 28.0871659
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 120 и 32 равна 115.859559
Ссылка на результат
?n1=132&n2=120&n3=32
Найти высоту треугольника со сторонами 109, 96 и 33
Найти высоту треугольника со сторонами 112, 88 и 57
Найти высоту треугольника со сторонами 58, 45 и 34
Найти высоту треугольника со сторонами 121, 97 и 39
Найти высоту треугольника со сторонами 134, 126 и 35
Найти высоту треугольника со сторонами 142, 88 и 69
Найти высоту треугольника со сторонами 112, 88 и 57
Найти высоту треугольника со сторонами 58, 45 и 34
Найти высоту треугольника со сторонами 121, 97 и 39
Найти высоту треугольника со сторонами 134, 126 и 35
Найти высоту треугольника со сторонами 142, 88 и 69