Рассчитать высоту треугольника со сторонами 132, 120 и 87

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 120 + 87}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-132)(169.5-120)(169.5-87)}}{120}\normalsize = 84.913904}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-132)(169.5-120)(169.5-87)}}{132}\normalsize = 77.1944582}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-132)(169.5-120)(169.5-87)}}{87}\normalsize = 117.122626}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 120 и 87 равна 84.913904
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 120 и 87 равна 77.1944582
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 120 и 87 равна 117.122626
Ссылка на результат
?n1=132&n2=120&n3=87