Рассчитать высоту треугольника со сторонами 132, 130 и 90

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 130 + 90}{2}} \normalsize = 176}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176(176-132)(176-130)(176-90)}}{130}\normalsize = 85.1525106}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176(176-132)(176-130)(176-90)}}{132}\normalsize = 83.862321}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176(176-132)(176-130)(176-90)}}{90}\normalsize = 122.998071}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 130 и 90 равна 85.1525106
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 130 и 90 равна 83.862321
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 130 и 90 равна 122.998071
Ссылка на результат
?n1=132&n2=130&n3=90