Рассчитать высоту треугольника со сторонами 132, 131 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 131 + 42}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-132)(152.5-131)(152.5-42)}}{131}\normalsize = 41.6074329}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-132)(152.5-131)(152.5-42)}}{132}\normalsize = 41.2922251}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-132)(152.5-131)(152.5-42)}}{42}\normalsize = 129.775564}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 131 и 42 равна 41.6074329
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 131 и 42 равна 41.2922251
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 131 и 42 равна 129.775564
Ссылка на результат
?n1=132&n2=131&n3=42
Найти высоту треугольника со сторонами 139, 133 и 50
Найти высоту треугольника со сторонами 143, 81 и 71
Найти высоту треугольника со сторонами 88, 68 и 33
Найти высоту треугольника со сторонами 97, 69 и 51
Найти высоту треугольника со сторонами 140, 103 и 81
Найти высоту треугольника со сторонами 58, 49 и 41
Найти высоту треугольника со сторонами 143, 81 и 71
Найти высоту треугольника со сторонами 88, 68 и 33
Найти высоту треугольника со сторонами 97, 69 и 51
Найти высоту треугольника со сторонами 140, 103 и 81
Найти высоту треугольника со сторонами 58, 49 и 41