Рассчитать высоту треугольника со сторонами 132, 85 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 85 + 82}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-132)(149.5-85)(149.5-82)}}{85}\normalsize = 79.4113235}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-132)(149.5-85)(149.5-82)}}{132}\normalsize = 51.1360795}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-132)(149.5-85)(149.5-82)}}{82}\normalsize = 82.3166159}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 85 и 82 равна 79.4113235
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 85 и 82 равна 51.1360795
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 85 и 82 равна 82.3166159
Ссылка на результат
?n1=132&n2=85&n3=82
Найти высоту треугольника со сторонами 72, 46 и 43
Найти высоту треугольника со сторонами 143, 94 и 56
Найти высоту треугольника со сторонами 145, 131 и 47
Найти высоту треугольника со сторонами 93, 78 и 40
Найти высоту треугольника со сторонами 106, 71 и 52
Найти высоту треугольника со сторонами 108, 99 и 94
Найти высоту треугольника со сторонами 143, 94 и 56
Найти высоту треугольника со сторонами 145, 131 и 47
Найти высоту треугольника со сторонами 93, 78 и 40
Найти высоту треугольника со сторонами 106, 71 и 52
Найти высоту треугольника со сторонами 108, 99 и 94