Рассчитать высоту треугольника со сторонами 132, 86 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 86 + 74}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-132)(146-86)(146-74)}}{86}\normalsize = 69.1056989}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-132)(146-86)(146-74)}}{132}\normalsize = 45.0234099}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-132)(146-86)(146-74)}}{74}\normalsize = 80.3120285}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 86 и 74 равна 69.1056989
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 86 и 74 равна 45.0234099
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 86 и 74 равна 80.3120285
Ссылка на результат
?n1=132&n2=86&n3=74
Найти высоту треугольника со сторонами 130, 121 и 55
Найти высоту треугольника со сторонами 122, 94 и 41
Найти высоту треугольника со сторонами 147, 132 и 120
Найти высоту треугольника со сторонами 146, 112 и 94
Найти высоту треугольника со сторонами 141, 124 и 93
Найти высоту треугольника со сторонами 99, 96 и 30
Найти высоту треугольника со сторонами 122, 94 и 41
Найти высоту треугольника со сторонами 147, 132 и 120
Найти высоту треугольника со сторонами 146, 112 и 94
Найти высоту треугольника со сторонами 141, 124 и 93
Найти высоту треугольника со сторонами 99, 96 и 30