Рассчитать высоту треугольника со сторонами 133, 105 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 105 + 86}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-133)(162-105)(162-86)}}{105}\normalsize = 85.9293302}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-133)(162-105)(162-86)}}{133}\normalsize = 67.8389449}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-133)(162-105)(162-86)}}{86}\normalsize = 104.913717}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 105 и 86 равна 85.9293302
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 105 и 86 равна 67.8389449
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 105 и 86 равна 104.913717
Ссылка на результат
?n1=133&n2=105&n3=86
Найти высоту треугольника со сторонами 133, 80 и 61
Найти высоту треугольника со сторонами 113, 69 и 45
Найти высоту треугольника со сторонами 149, 96 и 67
Найти высоту треугольника со сторонами 149, 84 и 69
Найти высоту треугольника со сторонами 139, 129 и 126
Найти высоту треугольника со сторонами 141, 108 и 66
Найти высоту треугольника со сторонами 113, 69 и 45
Найти высоту треугольника со сторонами 149, 96 и 67
Найти высоту треугольника со сторонами 149, 84 и 69
Найти высоту треугольника со сторонами 139, 129 и 126
Найти высоту треугольника со сторонами 141, 108 и 66