Рассчитать высоту треугольника со сторонами 133, 109 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 109 + 37}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-133)(139.5-109)(139.5-37)}}{109}\normalsize = 30.8929323}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-133)(139.5-109)(139.5-37)}}{133}\normalsize = 25.3182678}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-133)(139.5-109)(139.5-37)}}{37}\normalsize = 91.0089086}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 109 и 37 равна 30.8929323
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 109 и 37 равна 25.3182678
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 109 и 37 равна 91.0089086
Ссылка на результат
?n1=133&n2=109&n3=37
Найти высоту треугольника со сторонами 74, 66 и 54
Найти высоту треугольника со сторонами 117, 109 и 100
Найти высоту треугольника со сторонами 79, 60 и 43
Найти высоту треугольника со сторонами 126, 103 и 92
Найти высоту треугольника со сторонами 135, 116 и 72
Найти высоту треугольника со сторонами 44, 31 и 25
Найти высоту треугольника со сторонами 117, 109 и 100
Найти высоту треугольника со сторонами 79, 60 и 43
Найти высоту треугольника со сторонами 126, 103 и 92
Найти высоту треугольника со сторонами 135, 116 и 72
Найти высоту треугольника со сторонами 44, 31 и 25