Рассчитать высоту треугольника со сторонами 133, 111 и 23

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 111 + 23}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-111)(133.5-23)}}{111}\normalsize = 7.34015194}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-111)(133.5-23)}}{133}\normalsize = 6.12599147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-111)(133.5-23)}}{23}\normalsize = 35.4242115}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 111 и 23 равна 7.34015194
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 111 и 23 равна 6.12599147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 111 и 23 равна 35.4242115
Ссылка на результат
?n1=133&n2=111&n3=23