Рассчитать высоту треугольника со сторонами 133, 113 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 113 + 72}{2}} \normalsize = 159}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159(159-133)(159-113)(159-72)}}{113}\normalsize = 71.9905233}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159(159-133)(159-113)(159-72)}}{133}\normalsize = 61.1648807}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159(159-133)(159-113)(159-72)}}{72}\normalsize = 112.985127}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 113 и 72 равна 71.9905233
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 113 и 72 равна 61.1648807
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 113 и 72 равна 112.985127
Ссылка на результат
?n1=133&n2=113&n3=72
Найти высоту треугольника со сторонами 73, 71 и 18
Найти высоту треугольника со сторонами 145, 131 и 98
Найти высоту треугольника со сторонами 118, 115 и 38
Найти высоту треугольника со сторонами 97, 77 и 24
Найти высоту треугольника со сторонами 55, 47 и 33
Найти высоту треугольника со сторонами 146, 142 и 63
Найти высоту треугольника со сторонами 145, 131 и 98
Найти высоту треугольника со сторонами 118, 115 и 38
Найти высоту треугольника со сторонами 97, 77 и 24
Найти высоту треугольника со сторонами 55, 47 и 33
Найти высоту треугольника со сторонами 146, 142 и 63