Рассчитать высоту треугольника со сторонами 133, 114 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 114 + 22}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-133)(134.5-114)(134.5-22)}}{114}\normalsize = 11.966995}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-133)(134.5-114)(134.5-22)}}{133}\normalsize = 10.2574242}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-133)(134.5-114)(134.5-22)}}{22}\normalsize = 62.010792}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 114 и 22 равна 11.966995
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 114 и 22 равна 10.2574242
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 114 и 22 равна 62.010792
Ссылка на результат
?n1=133&n2=114&n3=22
Найти высоту треугольника со сторонами 118, 115 и 33
Найти высоту треугольника со сторонами 146, 100 и 96
Найти высоту треугольника со сторонами 106, 93 и 86
Найти высоту треугольника со сторонами 102, 100 и 79
Найти высоту треугольника со сторонами 119, 113 и 11
Найти высоту треугольника со сторонами 134, 100 и 95
Найти высоту треугольника со сторонами 146, 100 и 96
Найти высоту треугольника со сторонами 106, 93 и 86
Найти высоту треугольника со сторонами 102, 100 и 79
Найти высоту треугольника со сторонами 119, 113 и 11
Найти высоту треугольника со сторонами 134, 100 и 95