Рассчитать высоту треугольника со сторонами 133, 116 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 116 + 55}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-133)(152-116)(152-55)}}{116}\normalsize = 54.7529746}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-133)(152-116)(152-55)}}{133}\normalsize = 47.7544741}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-133)(152-116)(152-55)}}{55}\normalsize = 115.479001}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 116 и 55 равна 54.7529746
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 116 и 55 равна 47.7544741
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 116 и 55 равна 115.479001
Ссылка на результат
?n1=133&n2=116&n3=55
Найти высоту треугольника со сторонами 116, 100 и 69
Найти высоту треугольника со сторонами 129, 118 и 39
Найти высоту треугольника со сторонами 131, 107 и 46
Найти высоту треугольника со сторонами 131, 114 и 20
Найти высоту треугольника со сторонами 138, 125 и 42
Найти высоту треугольника со сторонами 102, 101 и 4
Найти высоту треугольника со сторонами 129, 118 и 39
Найти высоту треугольника со сторонами 131, 107 и 46
Найти высоту треугольника со сторонами 131, 114 и 20
Найти высоту треугольника со сторонами 138, 125 и 42
Найти высоту треугольника со сторонами 102, 101 и 4