Рассчитать высоту треугольника со сторонами 133, 117 и 100
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 117 + 100}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-133)(175-117)(175-100)}}{117}\normalsize = 96.6568042}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-133)(175-117)(175-100)}}{133}\normalsize = 85.028918}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-133)(175-117)(175-100)}}{100}\normalsize = 113.088461}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 117 и 100 равна 96.6568042
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 117 и 100 равна 85.028918
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 117 и 100 равна 113.088461
Ссылка на результат
?n1=133&n2=117&n3=100
Найти высоту треугольника со сторонами 88, 88 и 82
Найти высоту треугольника со сторонами 99, 63 и 56
Найти высоту треугольника со сторонами 139, 133 и 8
Найти высоту треугольника со сторонами 148, 139 и 61
Найти высоту треугольника со сторонами 99, 97 и 60
Найти высоту треугольника со сторонами 137, 134 и 111
Найти высоту треугольника со сторонами 99, 63 и 56
Найти высоту треугольника со сторонами 139, 133 и 8
Найти высоту треугольника со сторонами 148, 139 и 61
Найти высоту треугольника со сторонами 99, 97 и 60
Найти высоту треугольника со сторонами 137, 134 и 111