Рассчитать высоту треугольника со сторонами 133, 117 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 117 + 18}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-133)(134-117)(134-18)}}{117}\normalsize = 8.78718942}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-133)(134-117)(134-18)}}{133}\normalsize = 7.73008393}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-133)(134-117)(134-18)}}{18}\normalsize = 57.1167312}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 117 и 18 равна 8.78718942
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 117 и 18 равна 7.73008393
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 117 и 18 равна 57.1167312
Ссылка на результат
?n1=133&n2=117&n3=18
Найти высоту треугольника со сторонами 124, 121 и 70
Найти высоту треугольника со сторонами 142, 89 и 70
Найти высоту треугольника со сторонами 103, 84 и 39
Найти высоту треугольника со сторонами 108, 91 и 21
Найти высоту треугольника со сторонами 133, 112 и 66
Найти высоту треугольника со сторонами 102, 92 и 81
Найти высоту треугольника со сторонами 142, 89 и 70
Найти высоту треугольника со сторонами 103, 84 и 39
Найти высоту треугольника со сторонами 108, 91 и 21
Найти высоту треугольника со сторонами 133, 112 и 66
Найти высоту треугольника со сторонами 102, 92 и 81