Рассчитать высоту треугольника со сторонами 133, 118 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 118 + 16}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-118)(133.5-16)}}{118}\normalsize = 5.90960435}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-118)(133.5-16)}}{133}\normalsize = 5.24310762}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-118)(133.5-16)}}{16}\normalsize = 43.5833321}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 118 и 16 равна 5.90960435
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 118 и 16 равна 5.24310762
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 118 и 16 равна 43.5833321
Ссылка на результат
?n1=133&n2=118&n3=16
Найти высоту треугольника со сторонами 112, 85 и 80
Найти высоту треугольника со сторонами 6, 5 и 2
Найти высоту треугольника со сторонами 143, 97 и 53
Найти высоту треугольника со сторонами 147, 111 и 107
Найти высоту треугольника со сторонами 96, 94 и 91
Найти высоту треугольника со сторонами 57, 47 и 36
Найти высоту треугольника со сторонами 6, 5 и 2
Найти высоту треугольника со сторонами 143, 97 и 53
Найти высоту треугольника со сторонами 147, 111 и 107
Найти высоту треугольника со сторонами 96, 94 и 91
Найти высоту треугольника со сторонами 57, 47 и 36