Рассчитать высоту треугольника со сторонами 133, 118 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 118 + 64}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-133)(157.5-118)(157.5-64)}}{118}\normalsize = 63.98463}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-133)(157.5-118)(157.5-64)}}{133}\normalsize = 56.7683183}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-133)(157.5-118)(157.5-64)}}{64}\normalsize = 117.971662}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 118 и 64 равна 63.98463
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 118 и 64 равна 56.7683183
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 118 и 64 равна 117.971662
Ссылка на результат
?n1=133&n2=118&n3=64
Найти высоту треугольника со сторонами 128, 120 и 88
Найти высоту треугольника со сторонами 128, 116 и 57
Найти высоту треугольника со сторонами 80, 74 и 71
Найти высоту треугольника со сторонами 58, 53 и 34
Найти высоту треугольника со сторонами 84, 72 и 51
Найти высоту треугольника со сторонами 141, 134 и 84
Найти высоту треугольника со сторонами 128, 116 и 57
Найти высоту треугольника со сторонами 80, 74 и 71
Найти высоту треугольника со сторонами 58, 53 и 34
Найти высоту треугольника со сторонами 84, 72 и 51
Найти высоту треугольника со сторонами 141, 134 и 84