Рассчитать высоту треугольника со сторонами 133, 120 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 120 + 86}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-133)(169.5-120)(169.5-86)}}{120}\normalsize = 84.2802607}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-133)(169.5-120)(169.5-86)}}{133}\normalsize = 76.0423405}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-133)(169.5-120)(169.5-86)}}{86}\normalsize = 117.600364}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 120 и 86 равна 84.2802607
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 120 и 86 равна 76.0423405
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 120 и 86 равна 117.600364
Ссылка на результат
?n1=133&n2=120&n3=86
Найти высоту треугольника со сторонами 83, 82 и 61
Найти высоту треугольника со сторонами 61, 36 и 30
Найти высоту треугольника со сторонами 107, 106 и 67
Найти высоту треугольника со сторонами 142, 118 и 43
Найти высоту треугольника со сторонами 94, 86 и 36
Найти высоту треугольника со сторонами 117, 102 и 86
Найти высоту треугольника со сторонами 61, 36 и 30
Найти высоту треугольника со сторонами 107, 106 и 67
Найти высоту треугольника со сторонами 142, 118 и 43
Найти высоту треугольника со сторонами 94, 86 и 36
Найти высоту треугольника со сторонами 117, 102 и 86