Рассчитать высоту треугольника со сторонами 133, 121 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 121 + 57}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-133)(155.5-121)(155.5-57)}}{121}\normalsize = 56.9939483}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-133)(155.5-121)(155.5-57)}}{133}\normalsize = 51.8516371}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-133)(155.5-121)(155.5-57)}}{57}\normalsize = 120.987153}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 121 и 57 равна 56.9939483
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 121 и 57 равна 51.8516371
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 121 и 57 равна 120.987153
Ссылка на результат
?n1=133&n2=121&n3=57
Найти высоту треугольника со сторонами 112, 81 и 81
Найти высоту треугольника со сторонами 124, 88 и 47
Найти высоту треугольника со сторонами 60, 54 и 41
Найти высоту треугольника со сторонами 106, 96 и 89
Найти высоту треугольника со сторонами 112, 84 и 48
Найти высоту треугольника со сторонами 147, 133 и 123
Найти высоту треугольника со сторонами 124, 88 и 47
Найти высоту треугольника со сторонами 60, 54 и 41
Найти высоту треугольника со сторонами 106, 96 и 89
Найти высоту треугольника со сторонами 112, 84 и 48
Найти высоту треугольника со сторонами 147, 133 и 123