Рассчитать высоту треугольника со сторонами 133, 123 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 123 + 21}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-133)(138.5-123)(138.5-21)}}{123}\normalsize = 19.1520778}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-133)(138.5-123)(138.5-21)}}{133}\normalsize = 17.712072}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-133)(138.5-123)(138.5-21)}}{21}\normalsize = 112.176456}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 123 и 21 равна 19.1520778
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 123 и 21 равна 17.712072
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 123 и 21 равна 112.176456
Ссылка на результат
?n1=133&n2=123&n3=21
Найти высоту треугольника со сторонами 141, 84 и 70
Найти высоту треугольника со сторонами 66, 35 и 35
Найти высоту треугольника со сторонами 135, 100 и 93
Найти высоту треугольника со сторонами 133, 113 и 57
Найти высоту треугольника со сторонами 120, 92 и 60
Найти высоту треугольника со сторонами 148, 132 и 68
Найти высоту треугольника со сторонами 66, 35 и 35
Найти высоту треугольника со сторонами 135, 100 и 93
Найти высоту треугольника со сторонами 133, 113 и 57
Найти высоту треугольника со сторонами 120, 92 и 60
Найти высоту треугольника со сторонами 148, 132 и 68