Рассчитать высоту треугольника со сторонами 133, 124 и 115
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 124 + 115}{2}} \normalsize = 186}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{186(186-133)(186-124)(186-115)}}{124}\normalsize = 106.249706}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{186(186-133)(186-124)(186-115)}}{133}\normalsize = 99.0598762}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{186(186-133)(186-124)(186-115)}}{115}\normalsize = 114.5649}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 124 и 115 равна 106.249706
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 124 и 115 равна 99.0598762
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 124 и 115 равна 114.5649
Ссылка на результат
?n1=133&n2=124&n3=115
Найти высоту треугольника со сторонами 105, 88 и 53
Найти высоту треугольника со сторонами 131, 93 и 65
Найти высоту треугольника со сторонами 93, 91 и 54
Найти высоту треугольника со сторонами 84, 56 и 44
Найти высоту треугольника со сторонами 104, 68 и 52
Найти высоту треугольника со сторонами 148, 123 и 78
Найти высоту треугольника со сторонами 131, 93 и 65
Найти высоту треугольника со сторонами 93, 91 и 54
Найти высоту треугольника со сторонами 84, 56 и 44
Найти высоту треугольника со сторонами 104, 68 и 52
Найти высоту треугольника со сторонами 148, 123 и 78