Рассчитать высоту треугольника со сторонами 133, 124 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 124 + 21}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-133)(139-124)(139-21)}}{124}\normalsize = 19.5964755}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-133)(139-124)(139-21)}}{133}\normalsize = 18.2703982}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-133)(139-124)(139-21)}}{21}\normalsize = 115.712522}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 124 и 21 равна 19.5964755
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 124 и 21 равна 18.2703982
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 124 и 21 равна 115.712522
Ссылка на результат
?n1=133&n2=124&n3=21
Найти высоту треугольника со сторонами 122, 122 и 49
Найти высоту треугольника со сторонами 140, 124 и 116
Найти высоту треугольника со сторонами 148, 123 и 65
Найти высоту треугольника со сторонами 108, 84 и 82
Найти высоту треугольника со сторонами 141, 79 и 78
Найти высоту треугольника со сторонами 123, 122 и 7
Найти высоту треугольника со сторонами 140, 124 и 116
Найти высоту треугольника со сторонами 148, 123 и 65
Найти высоту треугольника со сторонами 108, 84 и 82
Найти высоту треугольника со сторонами 141, 79 и 78
Найти высоту треугольника со сторонами 123, 122 и 7