Рассчитать высоту треугольника со сторонами 133, 125 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 125 + 57}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-133)(157.5-125)(157.5-57)}}{125}\normalsize = 56.8025739}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-133)(157.5-125)(157.5-57)}}{133}\normalsize = 53.3858777}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-133)(157.5-125)(157.5-57)}}{57}\normalsize = 124.567048}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 125 и 57 равна 56.8025739
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 125 и 57 равна 53.3858777
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 125 и 57 равна 124.567048
Ссылка на результат
?n1=133&n2=125&n3=57
Найти высоту треугольника со сторонами 128, 106 и 52
Найти высоту треугольника со сторонами 104, 93 и 84
Найти высоту треугольника со сторонами 129, 129 и 51
Найти высоту треугольника со сторонами 125, 93 и 88
Найти высоту треугольника со сторонами 122, 102 и 45
Найти высоту треугольника со сторонами 132, 128 и 122
Найти высоту треугольника со сторонами 104, 93 и 84
Найти высоту треугольника со сторонами 129, 129 и 51
Найти высоту треугольника со сторонами 125, 93 и 88
Найти высоту треугольника со сторонами 122, 102 и 45
Найти высоту треугольника со сторонами 132, 128 и 122