Рассчитать высоту треугольника со сторонами 133, 129 и 118
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 129 + 118}{2}} \normalsize = 190}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{190(190-133)(190-129)(190-118)}}{129}\normalsize = 106.926581}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{190(190-133)(190-129)(190-118)}}{133}\normalsize = 103.710744}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{190(190-133)(190-129)(190-118)}}{118}\normalsize = 116.894313}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 129 и 118 равна 106.926581
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 129 и 118 равна 103.710744
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 129 и 118 равна 116.894313
Ссылка на результат
?n1=133&n2=129&n3=118
Найти высоту треугольника со сторонами 85, 56 и 42
Найти высоту треугольника со сторонами 53, 53 и 44
Найти высоту треугольника со сторонами 100, 83 и 59
Найти высоту треугольника со сторонами 82, 58 и 39
Найти высоту треугольника со сторонами 97, 65 и 46
Найти высоту треугольника со сторонами 148, 91 и 58
Найти высоту треугольника со сторонами 53, 53 и 44
Найти высоту треугольника со сторонами 100, 83 и 59
Найти высоту треугольника со сторонами 82, 58 и 39
Найти высоту треугольника со сторонами 97, 65 и 46
Найти высоту треугольника со сторонами 148, 91 и 58