Рассчитать высоту треугольника со сторонами 133, 85 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 85 + 66}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-133)(142-85)(142-66)}}{85}\normalsize = 55.3631409}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-133)(142-85)(142-66)}}{133}\normalsize = 35.3824585}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-133)(142-85)(142-66)}}{66}\normalsize = 71.3010148}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 85 и 66 равна 55.3631409
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 85 и 66 равна 35.3824585
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 85 и 66 равна 71.3010148
Ссылка на результат
?n1=133&n2=85&n3=66
Найти высоту треугольника со сторонами 148, 119 и 47
Найти высоту треугольника со сторонами 142, 107 и 44
Найти высоту треугольника со сторонами 123, 119 и 94
Найти высоту треугольника со сторонами 144, 108 и 97
Найти высоту треугольника со сторонами 124, 107 и 78
Найти высоту треугольника со сторонами 146, 132 и 33
Найти высоту треугольника со сторонами 142, 107 и 44
Найти высоту треугольника со сторонами 123, 119 и 94
Найти высоту треугольника со сторонами 144, 108 и 97
Найти высоту треугольника со сторонами 124, 107 и 78
Найти высоту треугольника со сторонами 146, 132 и 33