Рассчитать высоту треугольника со сторонами 133, 89 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 89 + 81}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-133)(151.5-89)(151.5-81)}}{89}\normalsize = 78.9708362}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-133)(151.5-89)(151.5-81)}}{133}\normalsize = 52.845146}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-133)(151.5-89)(151.5-81)}}{81}\normalsize = 86.770425}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 89 и 81 равна 78.9708362
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 89 и 81 равна 52.845146
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 89 и 81 равна 86.770425
Ссылка на результат
?n1=133&n2=89&n3=81
Найти высоту треугольника со сторонами 131, 114 и 48
Найти высоту треугольника со сторонами 80, 75 и 68
Найти высоту треугольника со сторонами 88, 58 и 32
Найти высоту треугольника со сторонами 149, 148 и 36
Найти высоту треугольника со сторонами 128, 123 и 8
Найти высоту треугольника со сторонами 46, 45 и 43
Найти высоту треугольника со сторонами 80, 75 и 68
Найти высоту треугольника со сторонами 88, 58 и 32
Найти высоту треугольника со сторонами 149, 148 и 36
Найти высоту треугольника со сторонами 128, 123 и 8
Найти высоту треугольника со сторонами 46, 45 и 43