Рассчитать высоту треугольника со сторонами 133, 91 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 91 + 83}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-133)(153.5-91)(153.5-83)}}{91}\normalsize = 81.837865}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-133)(153.5-91)(153.5-83)}}{133}\normalsize = 55.9943287}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-133)(153.5-91)(153.5-83)}}{83}\normalsize = 89.725852}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 91 и 83 равна 81.837865
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 91 и 83 равна 55.9943287
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 91 и 83 равна 89.725852
Ссылка на результат
?n1=133&n2=91&n3=83
Найти высоту треугольника со сторонами 150, 126 и 91
Найти высоту треугольника со сторонами 116, 109 и 50
Найти высоту треугольника со сторонами 121, 88 и 38
Найти высоту треугольника со сторонами 135, 110 и 47
Найти высоту треугольника со сторонами 114, 107 и 46
Найти высоту треугольника со сторонами 83, 76 и 72
Найти высоту треугольника со сторонами 116, 109 и 50
Найти высоту треугольника со сторонами 121, 88 и 38
Найти высоту треугольника со сторонами 135, 110 и 47
Найти высоту треугольника со сторонами 114, 107 и 46
Найти высоту треугольника со сторонами 83, 76 и 72