Рассчитать высоту треугольника со сторонами 133, 95 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 95 + 62}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-133)(145-95)(145-62)}}{95}\normalsize = 56.5724598}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-133)(145-95)(145-62)}}{133}\normalsize = 40.4088999}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-133)(145-95)(145-62)}}{62}\normalsize = 86.6836078}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 95 и 62 равна 56.5724598
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 95 и 62 равна 40.4088999
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 95 и 62 равна 86.6836078
Ссылка на результат
?n1=133&n2=95&n3=62
Найти высоту треугольника со сторонами 113, 69 и 49
Найти высоту треугольника со сторонами 129, 98 и 91
Найти высоту треугольника со сторонами 101, 84 и 24
Найти высоту треугольника со сторонами 124, 80 и 73
Найти высоту треугольника со сторонами 99, 92 и 23
Найти высоту треугольника со сторонами 145, 140 и 52
Найти высоту треугольника со сторонами 129, 98 и 91
Найти высоту треугольника со сторонами 101, 84 и 24
Найти высоту треугольника со сторонами 124, 80 и 73
Найти высоту треугольника со сторонами 99, 92 и 23
Найти высоту треугольника со сторонами 145, 140 и 52