Рассчитать высоту треугольника со сторонами 133, 97 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 97 + 38}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-133)(134-97)(134-38)}}{97}\normalsize = 14.2248318}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-133)(134-97)(134-38)}}{133}\normalsize = 10.3745014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-133)(134-97)(134-38)}}{38}\normalsize = 36.3107548}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 97 и 38 равна 14.2248318
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 97 и 38 равна 10.3745014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 97 и 38 равна 36.3107548
Ссылка на результат
?n1=133&n2=97&n3=38