Рассчитать высоту треугольника со сторонами 134, 100 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 100 + 62}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-134)(148-100)(148-62)}}{100}\normalsize = 58.4917635}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-134)(148-100)(148-62)}}{134}\normalsize = 43.6505698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-134)(148-100)(148-62)}}{62}\normalsize = 94.3415541}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 100 и 62 равна 58.4917635
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 100 и 62 равна 43.6505698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 100 и 62 равна 94.3415541
Ссылка на результат
?n1=134&n2=100&n3=62
Найти высоту треугольника со сторонами 126, 104 и 60
Найти высоту треугольника со сторонами 71, 60 и 38
Найти высоту треугольника со сторонами 134, 110 и 90
Найти высоту треугольника со сторонами 73, 58 и 44
Найти высоту треугольника со сторонами 99, 83 и 56
Найти высоту треугольника со сторонами 123, 122 и 29
Найти высоту треугольника со сторонами 71, 60 и 38
Найти высоту треугольника со сторонами 134, 110 и 90
Найти высоту треугольника со сторонами 73, 58 и 44
Найти высоту треугольника со сторонами 99, 83 и 56
Найти высоту треугольника со сторонами 123, 122 и 29