Рассчитать высоту треугольника со сторонами 134, 107 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 107 + 50}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-134)(145.5-107)(145.5-50)}}{107}\normalsize = 46.3616288}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-134)(145.5-107)(145.5-50)}}{134}\normalsize = 37.0201066}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-134)(145.5-107)(145.5-50)}}{50}\normalsize = 99.2138856}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 107 и 50 равна 46.3616288
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 107 и 50 равна 37.0201066
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 107 и 50 равна 99.2138856
Ссылка на результат
?n1=134&n2=107&n3=50
Найти высоту треугольника со сторонами 92, 78 и 33
Найти высоту треугольника со сторонами 79, 65 и 22
Найти высоту треугольника со сторонами 143, 129 и 54
Найти высоту треугольника со сторонами 120, 108 и 20
Найти высоту треугольника со сторонами 150, 136 и 49
Найти высоту треугольника со сторонами 42, 32 и 29
Найти высоту треугольника со сторонами 79, 65 и 22
Найти высоту треугольника со сторонами 143, 129 и 54
Найти высоту треугольника со сторонами 120, 108 и 20
Найти высоту треугольника со сторонами 150, 136 и 49
Найти высоту треугольника со сторонами 42, 32 и 29