Рассчитать высоту треугольника со сторонами 134, 111 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 111 + 97}{2}} \normalsize = 171}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171(171-134)(171-111)(171-97)}}{111}\normalsize = 95.4986911}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171(171-134)(171-111)(171-97)}}{134}\normalsize = 79.1071247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171(171-134)(171-111)(171-97)}}{97}\normalsize = 109.282007}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 111 и 97 равна 95.4986911
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 111 и 97 равна 79.1071247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 111 и 97 равна 109.282007
Ссылка на результат
?n1=134&n2=111&n3=97
Найти высоту треугольника со сторонами 76, 74 и 37
Найти высоту треугольника со сторонами 148, 104 и 59
Найти высоту треугольника со сторонами 144, 123 и 108
Найти высоту треугольника со сторонами 124, 119 и 113
Найти высоту треугольника со сторонами 123, 114 и 112
Найти высоту треугольника со сторонами 89, 63 и 55
Найти высоту треугольника со сторонами 148, 104 и 59
Найти высоту треугольника со сторонами 144, 123 и 108
Найти высоту треугольника со сторонами 124, 119 и 113
Найти высоту треугольника со сторонами 123, 114 и 112
Найти высоту треугольника со сторонами 89, 63 и 55